From Newton’s Equation to Fractional Diffusion and Wave Equations
نویسنده
چکیده
Fractional calculus represents a natural instrument to model nonlocal or long-range dependence phenomena either in space or time. The processes that involve different space and time scales appear in a wide range of contexts, from physics and chemistry to biology and engineering. In many of these problems, the dynamics of the system can be formulated in terms of fractional differential equations which include the nonlocal effects either in space or time. We give a brief, nonexhaustive, panoramic view of the mathematical tools associated with fractional calculus as well as a description of some fields where either it is applied or could be potentially applied.
منابع مشابه
Modeling Diffusion to Thermal Wave Heat Propagation by Using Fractional Heat Conduction Constitutive Model
Based on the recently introduced fractional Taylor’s formula, a fractional heat conduction constitutive equation is formulated by expanding the single-phase lag model using the fractional Taylor’s formula. Combining with the energy balance equation, the derived fractional heat conduction equation has been shown to be capable of modeling diffusion-to-Thermal wave behavior of heat propagation by ...
متن کاملA new fractional sub-equation method for solving the space-time fractional differential equations in mathematical physics
In this paper, a new fractional sub-equation method is proposed for finding exact solutions of fractional partial differential equations (FPDEs) in the sense of modified Riemann-Liouville derivative. With the aid of symbolic computation, we choose the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation in mathematical physics with a source to illustrate the validity a...
متن کاملFinite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients
In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...
متن کاملExact solutions of distinct physical structures to the fractional potential Kadomtsev-Petviashvili equation
In this paper, Exp-function and (G′/G)expansion methods are presented to derive traveling wave solutions for a class of nonlinear space-time fractional differential equations. As a results, some new exact traveling wave solutions are obtained.
متن کاملSolving the fractional integro-differential equations using fractional order Jacobi polynomials
In this paper, we are intend to present a numerical algorithm for computing approximate solution of linear and nonlinear Fredholm, Volterra and Fredholm-Volterra integro-differential equations. The approximated solution is written in terms of fractional Jacobi polynomials. In this way, firstly we define Riemann-Liouville fractional operational matrix of fractional order Jacobi polynomials, the...
متن کامل